
Reproduction of Spielman et al.'s 2020
Evaluation of the Social Vulnerability Index

August 3, 2023

1.0.1 Authors

• Liam Smith*, lwsmith@middlebury.edu, @Liam-W-Smith, Middlebury College
• Joseph Holler, josephh@middlebury.edu , @josephholler, ORCID link, Middlebury College

* Corresponding author and creator

Version 1.1 | Created 2023-07-12 | Last Updated 2023-07-21

1.0.2 Abstract

This study is a reproduction of:

Spielman, S. E., Tuccillo, J., Folch, D. C., Schweikert, A., Davies, R., Wood, N.,
& Tate, E. (2020). Evaluating Social Vulnerability Indicators: Criteria and their
Application to the Social Vulnerability Index. Natural Hazards, 100(1), 417–436.
https://doi.org/10.1007/s11069-019-03820-z

The Spielman et al. (2020) paper is in turn a replication of:

Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmen-
tal hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-
6237.8402002

Spielman et al. (2020) developed methods to evaluate the internal consistency and construct validity
of the Cutter, Boruff and Shirley (2003) Social Vulnerability Index (SoVI). First, they reproduce a
national SoVI model and validate it against an SPSS procedure provided by the original research
group (Hazards Vulnerability Research Institute at University of South Carolina). The original
SoVI uses 42 independent z-score normalized variables from the U.S. Census, reduces the data to
factors using Principal Components Analysis, selects the first eleven factors, inverts factors with
inverse relationships to social vulnerability, and sums the factors together to produce a SoVI score.
The reproduced SoVI model was slightly different than the original model due to changes in U.S.
Census data, using only 28 variables.

Spielman et al. modify the geographic extent of the SoVI calculation by calculating SoVI on a
national extent, and then recalculating for each of ten Federal Emergency Management Agency
(FEMA) regions, and again for a single state or cluster of states within each of the ten regions,
resulting in 21 total indices. Internal consistency is assessed by calculating the spearman rank cor-
relation coefficient of the SoVI score for counties in the state model compared to the FEMA region

1

https://orcid.org/0000-0002-2381-2699

model and national model. Construct validity is assessed by summing the loadings for each input
variable across the PCA factors in each model and calculating the variables sign (positive/negative)
and the rank of the variable’s total loading compared to the other variables. These signs and ranks
are summarized across all 21 versions of the SoVI model with regard to the number of times the
sign is different from the national model and the distributions of ranks.

In this reproduction study, we attempt to reproduce identical SoVI model outputs for each of
the 21 models in the original study. We will compare these outputs to data files in Spielman et
al.’s GitHub repository. We will also attempt to reproduce identical results of internal consistency
analysis (figure 1 and table 2) and construct validity analysis (figure 2) from Spielman et al.’s paper.
We succeed in reproducing identical SoVI model outputs, but find slight discrepancies in our figures
and tables.

The code in this Jupyter notebook report is adapted from Spielman et al.’s GitHub repository. The
original study states the intended open source permissions in the acknowledgements: “To facilitate
advances to current practice and to allow replication of our results, all of the code and data used
in this analysis is open source and available at (https://github.com/geoss/sovi-validity). Funding
was provided by the US National Science Foundation (Award No. 1333271) and the U.S. Geological
Survey Land Change Science Program.”

1.0.3 Keywords

Social vulnerability, social indicators, Principal Component Analysis, reproducibility

1.1 Study design
We computationally reproduce Spielman et al.’s original work using the code provided in their
Github repository (https://github.com/geoss/sovi-validity), adapting their code to run in an up-
dated Python environment using current package versions. We make all of our work available online
using the HEGSRR reproducible research compendium template.

The original paper was a replication study testing the sensitivity of SoVI to changes in geographic
extent. Spielman et al. addressed the following hypotheses in their work:

OR-H1: SoVI is internally inconsistent.

To address this hypothesis, Spielman et al. illustrated that SoVI is not robust to changes in ge-
ographic extent by calculating SoVI scores for ten selected states or groups of states on three
geographic extents: national, FEMA region, and state(s). The counties within the state(s) of inter-
est were then selected and ranked according to their SoVI score. OR-H1 was tested by calculating
Spearman’s rank correlation between the state and FEMA region models and between the state
and national models.

OR-H2: SoVI is theoretically inconsistent.

To address this hypothesis, Spielman et al. used the same SoVI models as described under OR-
H1. For each model, they summed all of the PCA factors together to determine the net influence
of each variable in each model. Then they recorded the signs of each variable and calculated
the number of deviations of the ten state and FEMA region models from the national model.
They also ranked the variables by absolute value for each model and calculated summary statistics
regarding the distribution of ranks for each variable amongst all models. Spielman et al. did not use

2

https://github.com/HEGSRR/HEGSRR-Template

a particular statistical method to test OR-H2, but illustrated substantial disagreements between
variable rankings and signs amongst the 21 SoVI models.

For our reproduction, we address the following three hypotheses:

RPr-H1: Reproduced SoVI model scores and other reproduced output datasets are not
identical to the original study SoVI model scores and provided output datasets for each
of the 21 SoVI models.

RPr-H2: Reproduced figures and tables for the internal consistency analysis are not
identical to the figures and tables (figure 1 and table 2) of the original study.

RPr-H3: For the theoretical consistency analysis, reproduced direction reversals and
min, average, and max SoVI rank value of 28 demographic variables are not identical
to the direction reversals and min, average, and max SoVI rank values shown in figure
2 of the original study.

We answer these questions by working through Spielman et al.’s code line by line in an updated
python coding environment. To improve reproducibility, we reorganize Spielman’s repository into
the Template for Reproducible and Replicable Research in Human-Environment and Geographical
Sciences (doi:10.17605/OSF.IO/W29MQ) and use one Jupyter notebook for the reproduction report
and code. We catalogue barriers to reproducibility and make improvements wherever possible.

Disclaimer: we worked with the data and code before writing this report, so there is no pre-
registration of the analysis plan. We originally intended to publish only a replication of this study;
we did not anticipate publishing a reproduction until we spent some time working with the code.

Spatio-temporal metadata

• Spatial Coverage: United States, excluding Puerto Rico
• Spatial Resolution: Counties and county equivalents
• Spatial Reference System: EPSG:4269
• Temporal Coverage: 2008 - 2012 (data is the 2012 5-year ACS)
• Temporal Resolution: One-time measurement, does not address change over time

1.2 Materials and procedure
1.2.1 Computational environment

Currently, we are using a 2020 MacBook Pro running on macOS Ventura 13.3.1. We anticipate
collaborators working on the project from different computers and different operating systems, and
we seek to containerize the project so that scripts can be run on many different machines.

The original study used Python for their analysis, so we reproduce their results in Python, using
a containerized conda environment. This environment consists of Python 3.9.16 and the software
packages listed in requirements.txt

To set up this environment on another machine, one should install the correct version of Python and
run the cell below to install the correct package versions. If a user wishes to create a self-contained
environment, they should explore venv, conda, or pipenv virtual environments.

[1]: %%script echo skipping # comment this line out to run this cell
!pip install -r ../environment/requirements.txt

3

https://support.apple.com/kb/SP818?locale=en_US
../environment/requirements.txt
https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/
https://pipenv.pypa.io/en/latest/

skipping # comment this line out to run this cell

[2]: # Import modules, define directories
import pygris
import pandas as pd
import geopandas as gpd
from pygris.data import get_census
from pygris import counties
from pyhere import here
import numpy as np
import libpysal as lps
import lxml
import tabulate
from scipy.stats import spearmanr
from scipy.stats.mstats import zscore as ZSCORE
from scipy.stats import rankdata
import mdp as MDP
from operator import itemgetter
import copy
from matplotlib.colors import ListedColormap
from matplotlib import patheffects as pe
import matplotlib.pyplot as plt
from IPython import display
from IPython.display import Markdown, Latex

pd.set_option("chained_assignment", None)

path = {
"dscr": here("data", "scratch"),
"drpub": here("data", "raw", "public", "spielman", "input"),
"drpub2": here("data", "raw", "public"),
"drpriv": here("data", "raw", "private"),
"ddpub": here("data", "derived", "public", "version1"),
"ddpriv": here("data", "derived", "private"),
"rfig": here("results", "figures"),
"roth": here("results", "other"),
"rtab": here("results", "tables"),
"og_out": here("data", "raw", "public", "spielman", "output"),
"dmet": here("data", "metadata")

}

[3]: %%script echo skipping # Save computational environment
Note that this approach is not perfect -- it may miss some packages
!pip install pigar
!python -m pigar generate

skipping # Save computational environment

4

1.2.2 Data and variables

For Spielman et al.’s original study, the data sources were the 2008-2012 5-year American Com-
munity Survey and the 2010 decennial census. Spielman et al. downloaded their data from Social
Explorer; in our reproduction, we pull our data directly from the census into Python via a census
API package known as pygris. These variables are based on the original work by Cutter et al. to
create SoVI, and cover a wide range of social and demographic information, the particulars of which
are described below.

In order to confirm that our data and Spielman et al.’s data perfectly match each other, we import
the names of relevant variables from both datasets here.

[4]: # Import data dictionary
acs_vars = pd.read_csv(here("data", "metadata", "ACS_2012_data_dictionary.

↪csv"))
acs_vars.drop(columns=acs_vars.columns[0], axis=1, inplace=True)

acs_variables = list(acs_vars['Reproduction Label'][1:])
spielman_acs_variables = list(acs_vars['Spielman Label'][1:])

(1) 2008-2012 American Community Survey (5-year) Used in both original study and
reproduction.

Planned deviation: to enhance reproducibility, we draw the data directly from the census into
python using the pygris package.

[5]: %%script echo skipping # Comment this first line out if you wish to acquire␣
↪data directly from census

Acquire attribute data for reproduction
counties_detailed = get_census(dataset = "acs/acs5", # dataset name on the␣

↪Census API you are connecting to; find datasets at https://api.census.gov/
↪data.html

variables = acs_variables, # string (or list of␣
↪strings) of desired vars. For the 2021 5-year ACS Data Profile, those␣
↪variable IDs are found at https://api.census.gov/data/2021/acs/acs5/profile/
↪variables.html

year = 2012, # year of your data (or end-year for a␣
↪5-year ACS sample)

params = { # dict of query parameters to send to the␣
↪API.

"for": "county:*"},
guess_dtypes = True,
return_geoid = True)

Drop Puerto Rico
counties_detailed = counties_detailed.loc[~counties_detailed['GEOID'].str.

↪startswith('72')]

5

Download and save raw data
counties_detailed.to_csv(here(path["drpub2"], "counties_attributes_raw.csv"))

skipping # Comment this first line out if you wish to acquire data directly from
census

[6]: # Optionally, load data directly from the repository
counties_detailed = pd.read_csv(here(path["drpub2"], "counties_attributes_raw.

↪csv"), dtype = {'GEOID': object})
counties_detailed = counties_detailed.drop(counties_detailed.columns[0],axis=1)

[7]: # Import original data from Spielman et al.

Import base ACS data
make_strings = {'Geo_FIPS': object, 'Geo_STATE': object, 'Geo_COUNTY': object,

'Geo_TRACT': object, 'Geo_CBSA': object, 'Geo_CSA': object}

acs = pd.read_csv(here(path["drpub"], 'sovi_acs.csv'),
dtype=make_strings, skiprows=1,encoding='latin-1')

Import, join an ACS supplemental
acs_sup2 = pd.read_csv(here(path["drpub"], 'sovi_acs_kids.csv'),

dtype=make_strings, skiprows=1,encoding='latin-1')

acs = acs.merge(acs_sup2, how = "inner", on='Geo_FIPS')

Drop Puerto Rico
acs = acs[acs.Geo_STATE_x != '72']

[8]: Markdown(here(path["dmet"], "ACS_2012_geographic_metadata.md"))
[8]: • Title: American Community Survey 2012 5-year Estimate Demographic Variables

• Abstract: The 5-year ACS provides estimates surrounding demographic information in the
USA. These estimates are more reliable than 1-year and 3-year estimates but less reliable
than decennial census data. On the other hand, 5-year estimates are less current than 1-year
and 3-year estimates because they represent measurements taken over 60 months. See the
census website for more details.

• Spatial Coverage: United States, excluding Puerto Rico
• Spatial Resolution: County and county-equivalents
• Spatial Reference System: None, just attribute data
• Temporal Coverage: 2008-2012
• Temporal Resolution: Data averaged over five years
• Lineage: Original data downloaded from Social Explorer and then placed in the original

study’s GitHub repository: https://github.com/geoss/sovi-validity. Reproduction data ob-
tained directly from the census via API.

• Distribution: The reproduction data is distributed via a census API. See the detailed tables
on the census website and instructions for drawing census data directly into python on the
pygris website. Spielman et al originally accessed the ACS data with Social Explorer from

6

https://www.census.gov/programs-surveys/acs/guidance/estimates.html
https://www.census.gov/data/developers/data-sets/acs-5year/2012.html
https://walker-data.com/pygris/

the following two tables.
– http://www.socialexplorer.com/pub/reportdata/HtmlResults.aspx?reportid=R10728365
– http://www.socialexplorer.com/pub/reportdata/HtmlResults.aspx?reportid=R10775556

• Constraints: Census data is available in the public domain
• Data Quality: Margin of error provided by the Census Bureau for relevant variables
• Variables: See ACS_2012_data_dictionary.csv

[9]: acs_vars

[9]: Reproduction Label Spielman Label \
0 GEOID Geo_FIPS
1 B01002_001E ACS12_5yr_B01002001
2 B03002_001E ACS12_5yr_B03002001
3 B03002_004E ACS12_5yr_B03002004
4 B03002_005E ACS12_5yr_B03002005
5 B03002_006E ACS12_5yr_B03002006
6 B03002_012E ACS12_5yr_B03002012
7 B06001_002E ACS12_5yr_B06001002
8 B09020_001E ACS12_5yr_B09020001
9 B01003_001E ACS12_5yr_B01003001
10 B25008_001E ACS12_5yr_B25008001
11 B25002_002E ACS12_5yr_B25002002
12 B25003_003E ACS12_5yr_B25003003
13 B25002_001E ACS12_5yr_B25002001
14 B09020_021E ACS12_5yr_B09020021
15 B01001_026E ACS12_5yr_B01001026
16 B11001_006E ACS12_5yr_B11001006
17 B11001_001E ACS12_5yr_B11001001
18 B25002_003E ACS12_5yr_B25002003
19 B19025_001E ACS12_5yr_B19025001
20 B23022_025E ACS12_5yr_B23022025
21 B23022_049E ACS12_5yr_B23022049
22 B23022_001E ACS12_5yr_B23022001
23 B17021_002E ACS12_5yr_B17021002
24 B17021_001E ACS12_5yr_B17021001
25 B25024_010E ACS12_5yr_B25024010
26 B25024_001E ACS12_5yr_B25024001
27 C24010_038E ACS12_5yr_C24010038
28 C24010_001E ACS12_5yr_C24010001
29 B19055_002E ACS12_5yr_B19055002
30 B19055_001E ACS12_5yr_B19055001
31 B09002_002E ACS12_5yr_B09002002
32 B09002_001E ACS12_5yr_B09002001
33 B19001_017E ACS12_5yr_B19001017
34 B06007_005E ACS12_5yr_B06007005
35 B06007_008E ACS12_5yr_B06007008
36 B06007_001E ACS12_5yr_B06007001

7

37 B16010_002E ACS12_5yr_B16010002
38 B16010_001E ACS12_5yr_B16010001
39 C24050_002E ACS12_5yr_C24050002
40 C24050_001E ACS12_5yr_C24050001
41 C24050_029E ACS12_5yr_C24050029
42 B08201_002E ACS12_5yr_B08201002
43 B08201_001E ACS12_5yr_B08201001
44 B25064_001E ACS12_5yr_B25064001
45 B25077_001E ACS12_5yr_B25077001

Alias \
0 FIPS code unique identifier
1 median age
2 total population of respondents to race/ethnicity
3 total Black population
4 total Native American population
5 total Asian population
6 total Latinx population
7 total population under 5 years of age
8 total population over 65 years of age
9 total population
10 total population in occupied housing units
11 total occupied housing units
12 total renter occupied housing units
13 total housing units for which occupancy status…
14 total 65+ living in group quarters
15 total female population
16 total female-headed family households
17 total households for which household type is k…
18 total vacant housing units
19 aggregate household income
20 total males unemployed for last 12 months
21 total females unemployed for last 12 months
22 total population for which unemployment and se…
23 total population below poverty level
24 total population for which poverty information…
25 number of mobile home housing units in structure
26 total housing units in structure
27 total female employed
28 total population for which sex and occupation …
29 total households with social security income
30 total households for which social security inc…
31 total children in married couple families
32 total children for which family type and age a…
33 total households with over 200k income
34 total Spanish-speakers who speak english less …
35 total people who speak another language and sp…

8

36 total population with known language spoken at…
37 total population with less than a high school …
38 total for which education, employment, languag…
39 total population in extractive industries
40 total population for which industry known
41 total people in service occupations
42 total households with no available vehicle
43 total households for which vehicle status and …
44 median gross rent
45 median home value

Definition Type \
0 Unique code for every county and county-equiva… string
1 MEDIAN AGE BY SEX: Estimate!!Median age!!Total float64
2 HISPANIC OR LATINO ORIGIN BY RACE: Estimate!!T… int64
3 HISPANIC OR LATINO ORIGIN BY RACE: Estimate!!T… int64
4 HISPANIC OR LATINO ORIGIN BY RACE: Estimate!!T… int64
5 HISPANIC OR LATINO ORIGIN BY RACE: Estimate!!T… int64
6 HISPANIC OR LATINO ORIGIN BY RACE: Estimate!!T… int64
7 PLACE OF BIRTH BY AGE IN THE UNITED STATES: Es… float64
8 RELATIONSHIP BY HOUSEHOLD TYPE (INCLUDING LIVI… int64
9 TOTAL POPULATION: Estimate!!Total int64
10 TOTAL POPULATION IN OCCUPIED HOUSING UNITS BY … int64
11 OCCUPANCY STATUS: Estimate!!Total!!Occupied int64
12 TENURE: Estimate!!Total!!Renter occupied int64
13 OCCUPANCY STATUS: Estimate!!Total int64
14 RELATIONSHIP BY HOUSEHOLD TYPE (INCLUDING LIVI… int64
15 SEX BY AGE: Estimate!!Total!!Female int64
16 HOUSEHOLD TYPE (INCLUDING LIVING ALONE): Estim… int64
17 HOUSEHOLD TYPE (INCLUDING LIVING ALONE): Estim… int64
18 OCCUPANCY STATUS: Estimate!!Total!!Vacant int64
19 AGGREGATE HOUSEHOLD INCOME IN THE PAST 12 MONT… int64
20 SEX BY WORK STATUS IN THE PAST 12 MONTHS BY US… int64
21 SEX BY WORK STATUS IN THE PAST 12 MONTHS BY US… int64
22 SEX BY WORK STATUS IN THE PAST 12 MONTHS BY US… int64
23 POVERTY STATUS OF INDIVIDUALS IN THE PAST 12 M… int64
24 POVERTY STATUS OF INDIVIDUALS IN THE PAST 12 M… int64
25 UNITS IN STRUCTURE: Estimate!!Total!!Mobile home int64
26 UNITS IN STRUCTURE: Estimate!!Total int64
27 SEX BY OCCUPATION FOR THE CIVILIAN EMPLOYED PO… int64
28 SEX BY OCCUPATION FOR THE CIVILIAN EMPLOYED PO… int64
29 SOCIAL SECURITY INCOME IN THE PAST 12 MONTHS F… int64
30 SOCIAL SECURITY INCOME IN THE PAST 12 MONTHS F… int64
31 OWN CHILDREN UNDER 18 YEARS BY FAMILY TYPE AND… int64
32 OWN CHILDREN UNDER 18 YEARS BY FAMILY TYPE AND… int64
33 HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 201… int64
34 PLACE OF BIRTH BY LANGUAGE SPOKEN AT HOME AND … float64

9

35 PLACE OF BIRTH BY LANGUAGE SPOKEN AT HOME AND … float64
36 PLACE OF BIRTH BY LANGUAGE SPOKEN AT HOME AND … float64
37 EDUCATIONAL ATTAINMENT AND EMPLOYMENT STATUS B… int64
38 EDUCATIONAL ATTAINMENT AND EMPLOYMENT STATUS B… int64
39 INDUSTRY BY OCCUPATION FOR THE CIVILIAN EMPLOY… int64
40 INDUSTRY BY OCCUPATION FOR THE CIVILIAN EMPLOY… int64
41 INDUSTRY BY OCCUPATION FOR THE CIVILIAN EMPLOY… int64
42 HOUSEHOLD SIZE BY VEHICLES AVAILABLE: Estimate… int64
43 HOUSEHOLD SIZE BY VEHICLES AVAILABLE: Estimate… int64
44 MEDIAN GROSS RENT (DOLLARS): Estimate!!Median … int64
45 MEDIAN VALUE (DOLLARS): Estimate!!Median value… float64

Domain Missing Data Value(s) Missing Data Frequency
0 01001 - 56045 None 0.0
1 21.7 - 63 NaN 0.0
2 66 - 9840024 NaN 0.0
3 0 - 1267825 NaN 0.0
4 0 - 59060 NaN 0.0
5 0 - 1343920 NaN 0.0
6 0 - 4694846 NaN 0.0
7 0 - 651662 NaN 78.0
8 5 - 1078555 NaN 0.0
9 66 - 9840024 NaN 0.0
10 62 - 9664175 NaN 0.0
11 35 - 3218511 NaN 0.0
12 14 - 1695180 NaN 0.0
13 70 - 3441416 NaN 0.0
14 0 - 37611 NaN 0.0
15 20 - 4987765 NaN 0.0
16 0 - 498851 NaN 0.0
17 35 - 3218511 NaN 0.0
18 35 - 245069 NaN 0.0
19 1785600 - 263044380000 NaN 0.0
20 1 - 726803 NaN 0.0
21 0 - 1131737 NaN 0.0
22 45 - 6658456 NaN 0.0
23 0 - 1658231 NaN 0.0
24 64 - 9684503 NaN 0.0
25 0 - 85377 NaN 0.0
26 70 - 3441416 NaN 0.0
27 12 - 2056023 NaN 0.0
28 54 - 4495118 NaN 0.0
29 9 - 726298 NaN 0.0
30 35 - 3218511 NaN 0.0
31 0 - 1380977 NaN 0.0
32 0 - 2032147 NaN 0.0
33 0 - 208954 NaN 0.0

10

34 0 - 1695391 NaN 78.0
35 0 - 743418 NaN 78.0
36 66 - 9188362 NaN 78.0
37 5 - 1508273 NaN 0.0
38 65 - 6380366 NaN 0.0
39 0 - 54942 NaN 0.0
40 54 - 4495118 NaN 0.0
41 4 - 837607 NaN 0.0
42 0 - 577967 NaN 0.0
43 35 - 3218511 NaN 0.0
44 275 - 1678 NaN 0.0
45 19400 - 944100 NaN 1.0

The above are the metadata files that we wrote for our pygris-acquired version of this data, stored
as ACS_2012_data_dictionary.csv and ACS_2012_geographic_metadata.md. The metadata files
provided by Spielman et al. are also in our repository, named sovi_acs.txt and sovi_acs_kids.txt.

(2) 2010 Decennial Census Used in Spielman et al.’s original study.

[10]: # Import decennial supplemental
dec_sup1 = pd.read_csv(here(path["drpub"],'sovi_decennial_sup1.csv'),

dtype=make_strings,skiprows=1,encoding='latin-1')

[11]: Markdown(here(path["dmet"], "dec_2010_metadata.md"))
[11]: • Title: 2010 Decennial Census

• Abstract: Collected once every ten years, the decennial census documents demographic and
population data in the United States.

• Spatial Coverage: United States, excluding Puerto Rico
• Spatial Resolution: County and county-equivalents
• Spatial Reference System: None, just attribute data
• Temporal Coverage: 2010
• Temporal Resolution: One-time observations
• Lineage: Original data downloaded from Social Explorer and then placed in the original

study’s GitHub repository: https://github.com/geoss/sovi-validity.
• Distribution: Visit this URL for access
• Constraints: Census data is available in the public domain
• Data Quality: Margin of error provided by the Census Bureau for relevant variables
• Variables:

Label Alias Definition Type Accuracy Domain

Missing
Data

Value(s)

Missing
Data Fre-
quency

SE_T02A_002Land area Area
(Land) in
square
miles

float64 … 1.998779
-

145504.8

nan 0

11

http://www.socialexplorer.com/pub/reportdata/HtmlResults.aspx?reportid=R10728369

Label Alias Definition Type Accuracy Domain

Missing
Data

Value(s)

Missing
Data Fre-
quency

Geo_FIPS FIPS
code
unique
identifier

Unique
code for
every
county
and

county-
equivalent
in USA

string … g01001 -
g56045

None 0

Original metadata file provided by Spielman et al. as sovi_decennial_sup1.txt.

(3) USA Counties Shapefile Used in Spielman et al.’s original study

[12]: spielman_geom = gpd.read_file(here(path["drpub"], "USA_Counties_500k.shp"))

[13]: Markdown(here(path["dmet"], 'USA_counties_metadata.md'))
[13]: • Title: USA Counties Geographic Shapefile

• Abstract: No metadata provided, so it is unclear exactly where Spielman et al acquired
this file but they likely downloaded it directly or indirectly from the census. The shapefile
provides the geometries of counties and county-equivalents in the United States, with limited
attribute information including county name and a unique identifier.

• Spatial Coverage: United States, excluding Puerto Rico
• Spatial Resolution: County and county-equivalents
• Spatial Reference System: EPSG:4269
• Temporal Coverage: Unknown
• Temporal Resolution: One-time observations
• Lineage: Unknown
• Distribution: Unknown. Presumably downloaded from census.
• Constraints: Census data is available in the public domain
• Data Quality: 1:500,000 scale
• Variables: For each variable, enter the following information. If you have two or more

variables per data source, you may want to present this information in table form (shown
below)

12

Label Alias Definition Type Accuracy Domain

Missing
Data

Value(s)

Missing
Data Fre-
quency

geoFIPS FIPS
code
unique
identifer

Unique
code for
every
county
and

county-
equivalent
in USA

string … g01001 -
g56045

None 0

No original metadata file provided.

(4) USA Counties Cartographic Boundaries Used in reproduction study.

Planned deviation: to enhance reproducibility, we draw the data directly from the census into
python using the pygris package.

[14]: %%script echo skipping # Comment this first line out if you wish to acquire␣
↪data directly from census

Acquire geographical data for reproduction
counties_shp = counties(cb = True, year = 2010, cache = True) # year 2012 (and␣

↪2011) cartographic boundaries not available

Save raw data
counties_shp.to_file(here(path["drpub2"], "counties_geometries_raw.gpkg"))

skipping # Comment this first line out if you wish to acquire data directly from
census

[15]: # Optionally, load data directly from the repository
counties_shp = gpd.read_file(here(path["drpub2"], "counties_geometries_raw.

↪gpkg"))

[16]: Markdown(here(path["dmet"], "county_geom_2010_metadata.md"))
[16]: • Title: USA Counties Cartographic Boundaries

• Abstract: The cartographic boundary files provided by the US census are simplified repre-
sentations of the MAF/TIGER files. We use the 2010 boundary file because the census has
not made such a file available for 2012 or 2011 and the original paper also used land area
from 2010. This shapefile provides the geometries of counties and county-equivalents in the
United States, with limited attribute information including land area.

• Spatial Coverage: United States, excluding Puerto Rico
• Spatial Resolution: County and county-equivalents
• Spatial Reference System: EPSG:4269
• Temporal Coverage: 2010
• Temporal Resolution: One-time observations

13

• Lineage: We use pygris to pull the data directly from the census into python.
• Distribution: This file is distributed via a census API. See more information on the census

website and instructions for drawing census data directly into python on the pygris website.
• Constraints: Census data is available in the public domain
• Data Quality: 1:500,000 scale
• Variables: For each variable, enter the following information. If you have two or more

variables per data source, you may want to present this information in table form (shown
below)

Label Alias Definition Type Accuracy Domain

Missing
Data

Value(s)

Missing
Data Fre-
quency

STATE State-
level
FIPS
code

State-
level
FIPS
code

string … 01 - 56 None 0

COUNTY County-
level
FIPS
code

County-
level
FIPS
code

string … 001 - 840 None 0

CENSUSAREAland area land area
in square
miles

float64 … 1.999 -
145504.789

nan 0

The metadata file for this data is stored as county_geom_2010_metadata.md.

1.2.3 Data transformations

A workflow diagram for this section is displayed below.

We begin with step P1: joining the geometry and attribute data

[17]: # Step P1
Join geometry and attribute data for reproduction
counties_shp['GEOID'] = counties_shp.STATE + counties_shp.COUNTY
counties = counties_shp.merge(counties_detailed, how = "inner", on = "GEOID")

Also join Spielman's land area information to the rest of Spielman's data

14

https://walker-data.com/pygris/
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html#list-tab-1556094155
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.2010.html#list-tab-1556094155
https://walker-data.com/pygris/

(to check that all data is accurate, not for purposes of analysis)
acs = acs.merge(dec_sup1, how = "inner", on='Geo_FIPS')

Planned deviation: Because we decided to acquire our data independently from Spielman et al.,
we need to check that our data is indeed the same as theirs.

To begin, we define a function that can check that the entries of two pandas DataFrames are equal.

[18]: # Define a function that can determine whether every entry in specified columns␣
↪of two tables match

def equiv(table1, sort1, column1, table2, sort2, column2):
'''
Tests two tables to see whether corresponding columns have equivalent␣

↪entries.

Parameters:
table1 - the first table
sort1 - the column in the first table to join by (str)
column1 - the column(s) in the first table to test the values of (list of␣

↪str) (should list analogous columns for columns2)
table2 - the second table
sort2 - the column in the second table to join by (str)
column2 - the column(s) in the second table to test the values of (list of␣

↪str)
'''
Sort tables
table1 = table1.sort_values(by = sort1).reset_index()
table2 = table2.sort_values(by = sort2).reset_index()

Rename column name in table2 to match that in table1
for i in range(len(column1)):

table2 = table2.rename(columns={column2[i]: column1[i]})

Select the columns to test equivalency of
table1 = table1[column1]
table2 = table2[column1]

Perform equivalency test
test = table1.eq(table2)
return test

Next, we round our area columns to the nearest integer, just for the purposes of comparing the
two columns. These columns came from different sources and we know that they do not match up
exactly.

[19]: # # Round area column
acs['SE_T02A_002_check'] = acs.SE_T02A_002.round(0)
counties['CENSUSAREA_check'] = counties.CENSUSAREA.round(0)

15

Add the area variables to the lists of variables
acs_variables.append('CENSUSAREA')
spielman_acs_variables.append('SE_T02A_002')

[20]: # Perform equivalency test
test = equiv(counties, "GEOID", acs_variables, acs, "Geo_FIPS",␣

↪spielman_acs_variables)
matching_cols = pd.DataFrame({"test": test.sum().eq(3143)}) # 3143 matches the␣

↪number of rows
matching_cols.loc[~matching_cols.test] # Identify the columns that have some␣

↪data discrepencies

[20]: test
B25077_001E False
CENSUSAREA False

The following variables have some discrepancy between the original and reproduction data: -
B25077_001E - CENSUSAREA

[21]: # Inspect the data values for B25077_001E at the indices with data discrepancies

Find the rows for which there are data discrepancies
messed_up_indices = test[["B25077_001E"]].loc[~test.B25077_001E]

Select the data of interest from tygris
tygris_data = counties.sort_values(by = "GEOID")\

.reset_index().loc[messed_up_indices.index]\
[["GEOID", "B25077_001E"]]

Select the data of interest from Spielman et al.
spielman_data = acs.sort_values(by = "Geo_FIPS")\

.reset_index().loc[messed_up_indices.index]\
[["Geo_FIPS", "ACS12_5yr_B25077001"]]

Join and inspect
merged = tygris_data.merge(spielman_data, how = "inner", left_on = "GEOID",␣

↪right_on = "Geo_FIPS")
merged

[21]: GEOID B25077_001E Geo_FIPS ACS12_5yr_B25077001
0 15005 NaN 15005 NaN

By inspection, we see that the one disagreement between B25077_001E and
ACS12_5yr_B25077001 occurs because of a NaN value in an analogous location in each of
the two datasets. Rather than revealing an issue in matching our data, this shows us that we will
need to impute a missing value for one NaN in B25077_001E – median home value (see P3).

16

[22]: # Inspect the data values for CENSUSAREA at the indices with data discrepancies

Find the rows for which there are data discrepancies
messed_up_indices = test[["CENSUSAREA"]].loc[~test.CENSUSAREA]

Select the data of interest from tygris
tygris_data = counties.sort_values(by = "GEOID")\

.reset_index().loc[messed_up_indices.index]\
[["GEOID", "CENSUSAREA"]]

Select the data of interest from Spielman et al.
spielman_data = acs.sort_values(by = "Geo_FIPS")\

.reset_index().loc[messed_up_indices.index]\
[["Geo_FIPS", "SE_T02A_002"]]

Join and inspect
merged = tygris_data.merge(spielman_data, how = "inner", left_on = "GEOID",␣

↪right_on = "Geo_FIPS")
merged

[22]: GEOID CENSUSAREA Geo_FIPS SE_T02A_002
0 01001 594.436 01001 594.4361
1 01005 884.876 01005 884.8763
2 01007 622.582 01007 622.5823
3 01009 644.776 01009 644.7759
4 01011 622.805 01011 622.8047
… … … … …
2285 55137 626.153 55137 626.1533
2286 55141 793.116 55141 793.1165
2287 56013 9183.814 56013 9183.8130
2288 56023 4076.129 56023 4076.1300
2289 56037 10426.649 56037 10426.6500

[2290 rows x 4 columns]

There are many disagreements between CENSUSAREA and SE_T02A_002, but they appear to
be relatively minor differences. Let us evaluate how large those differences are.

[23]: merged["Difference"] = abs(merged["CENSUSAREA"] - merged["SE_T02A_002"])
print("Maximum difference:", merged['Difference'].max(), "\nAverage difference:

↪", merged['Difference'].mean())

Maximum difference: 0.010999999998603016
Average difference: 0.00031027379912322995

The largest discrepency between the two different sources of land area data is just over 0.01 square
miles and the average difference (amongst those with a difference) is tiny. With such a minor
difference between our data and theirs, for our purposes we will consider our data roughly the same
as Spielman et al.’s.

17

[24]: # Step P2
Calculating the variables used in SoVI
counties['MEDAGE_ACS'] = counties.B01002_001E
counties['BLACK_ACS'] = counties.B03002_004E / (counties.B03002_001E)
counties['QNATAM_ACS'] = counties.B03002_005E / (counties.B03002_001E)
counties['QASIAN_ACS'] = counties.B03002_006E / (counties.B03002_001E)
counties['QHISP_ACS'] = counties.B03002_012E / (counties.B03002_001E)
counties['QAGEDEP_ACS'] = (counties.B06001_002E + counties.B09020_001E) /␣

↪(counties.B01003_001E)
counties['QPUNIT_ACS'] = counties.B25008_001E / (counties.B25002_002E)
counties['PRENTER_ACS'] = counties.B25003_003E / (counties.B25002_001E)
counties['QNRRES_ACS'] = counties.B09020_021E / (counties.B01003_001E)
counties['QFEMALE_ACS'] = counties.B01001_026E / (counties.B01003_001E)
counties['QFHH_ACS'] = counties.B11001_006E / (counties.B11001_001E)
counties['QUNOCCHU_ACS'] = counties.B25002_003E / (counties.B25002_001E)
counties['QCVLUN'] = (counties.B23022_025E + counties.B23022_049E) / \

counties.B23022_001E
counties['QPOVTY'] = (counties.B17021_002E) / counties.B17021_001E
counties['QMOHO'] = (counties.B25024_010E) / counties.B25024_001E
counties['QFEMLBR'] = (counties.C24010_038E) / counties.C24010_001E
counties['QSSBEN'] = (counties.B19055_002E) / counties.B19055_001E
counties['QFAM'] = (counties.B09002_002E) / counties.B09002_001E
counties['QRICH200K'] = (counties.B19001_017E) / counties.B11001_001E
counties['PERCAP_ALT'] = counties.B19025_001E / (counties.B25008_001E)
counties['QESL_ALT'] = (counties.B06007_005E + counties.B06007_008E) / \

counties.B06007_001E
counties['QED12LES_ALT'] = (counties.B16010_002E) / counties.B16010_001E
counties['QEXTRCT_ALT'] = (counties.C24050_002E) / counties.C24050_001E
counties['QSERV_ALT'] = (counties.C24050_029E) / counties.C24050_001E
counties['QNOAUTO_ALT'] = (counties.B08201_002E) / counties.B08201_001E
counties['MDGRENT_ALT'] = counties.B25064_001E
counties['MHSEVAL_ALT'] = counties.B25077_001E
counties['POPDENS'] = counties.B01003_001E / (counties.CENSUSAREA)

As noted before, B25077_001E is missing a data value. We now perform one final check to see if
we need to impute anything else.

[25]: # Check for missing data
for i in counties.columns:

x = counties[i].isnull().sum()
if x > 0:

print(i, "contains", x, "missing value(s).")

Check for infinities
counties_num = counties.select_dtypes(include=['int64','float64'])
for i in counties_num.columns:

xmin = counties_num[i].min()

18

xmax = counties_num[i].max()
if xmin == -np.inf:

print(i, "contains a negative infinity")
elif xmax == np.inf:

print(i, "contains a positive infinity")

LSAD contains 2 missing value(s).
B25077_001E contains 1 missing value(s).
QFAM contains 2 missing value(s).
MHSEVAL_ALT contains 1 missing value(s).

There are four variables with missing data. LSAD is not used in our analysis, so we may ignore
this. B25077_001E and MHSEVAL_ALT are literally identical, so we will ignore B25077_001E
and simply impute for MHSEVAL_ALT’s one missing value. We also need to impute for QFAM’s 2
missing values. We use the same imputation decisions that Spielman et al. employ in their analysis.

Unplanned deviation: When imputing for MHSEVAL_ALT’s missing data, we removed a fair
amount of extraneous code that was filling in missing spatial lag data with original data for the
county. This was unnecessary because we only needed to impute data for one county and that county
had spatial lag data. Also note that Spielman et al.’s method for imputing data for MHSEVAL_ALT
is a deviation from Cutter’s original methodology, in which she imputed a 0 for any missing value.
While this is a deviation from the original SoVI methodology, 0 is an unrealistic median home
value, so Spielman et al.’s method for imputation seems like a reasonable improvement.

[26]: # Step P3
Replace missing QFAM data with 0
counties.QFAM = counties.QFAM.replace([np.inf, -np.inf, np.nan], 0)

Replace missing MHSEVAL_ALT data with its spatial lag

Calculate spatial weights matrix
w = lps.weights.Queen.from_dataframe(counties)
w.transform = 'R'
Calculate spatial lag
counties['MHSEVAL_ALT_LAG'] = lps.weights.lag_spatial(w, counties.MHSEVAL_ALT)
Impute for the missing value
counties.MHSEVAL_ALT[np.isnan(counties['MHSEVAL_ALT'])] =␣

↪counties[["MHSEVAL_ALT_LAG"]][pd.isna(counties['MHSEVAL_ALT'])]

('WARNING: ', 68, ' is an island (no neighbors)')
('WARNING: ', 546, ' is an island (no neighbors)')
('WARNING: ', 547, ' is an island (no neighbors)')
('WARNING: ', 549, ' is an island (no neighbors)')
('WARNING: ', 1226, ' is an island (no neighbors)')
('WARNING: ', 1876, ' is an island (no neighbors)')
('WARNING: ', 2976, ' is an island (no neighbors)')

/Users/liamsmith/opt/anaconda3/envs/RPl-Spielman-2020/lib/python3.9/site-
packages/libpysal/weights/weights.py:172: UserWarning: The weights matrix is not
fully connected:

19

There are 10 disconnected components.
There are 7 islands with ids: 68, 546, 547, 549, 1226, 1876, 2976.
warnings.warn(message)

Before adjusting directionality, let us check that all of our derived variables match all of Spielman
et al.’s derived variables.

[27]: # Import Spielman et al.'s derived variables
US_All = pd.read_csv(here("data", "raw", "public", "spielman", "output",␣

↪"sovi_inputs.csv"))
counties.to_csv(here(path["ddpub"],'counties.csv'))
counties.to_file(here(path["ddpub"],'counties.gpkg'))
counties = pd.read_csv(here(path["ddpub"], "counties.csv"), dtype = {'GEOID':␣

↪object})

[28]: # Select only the relevant columns

Attribute name and expected influence on vulnerability
input_names = [['MEDAGE_ACS', 'pos', 'person', 'Median Age'],

['BLACK_ACS', 'pos', 'person', 'Pop African-American (%)'],
['QNATAM_ACS', 'pos', 'person', 'Pop Native American (%)'],
['QASIAN_ACS', 'pos', 'person', 'Pop Asian (%)'],
['QHISP_ACS', 'pos', 'person', 'Pop Hispanic (%)'],
['QAGEDEP_ACS', 'pos', 'person', 'Age Dependency (%)'],
['QPUNIT_ACS', 'pos', 'person', 'Persons Per Housing Unit'],
['PRENTER_ACS', 'pos', 'hu', 'Rental Housing (%)'],
['QNRRES_ACS', 'pos', 'person', 'Nursing Home Residents (%)'],
['QFEMALE_ACS', 'pos', 'person', 'Pop Female (%)'],
['QFHH_ACS', 'pos', 'hu', 'Female-Headed Households (%)'],
['QUNOCCHU_ACS', 'pos', 'hu', 'Vacant Housing (%)'],
['PERCAP_ALT', 'neg', 'person', 'Per-Capita Income'],
['QESL_ALT', 'pos', 'person', 'English as Second Language (%)'],
['QCVLUN', 'pos', 'person', 'Unemployment (%)'],
['QPOVTY', 'pos', 'person', 'Poverty (%)'],
['QMOHO', 'pos', 'hu', 'Mobile Homes (%)'],
['QED12LES_ALT', 'pos', 'person',

'Adults Completed <Grade 12 (%)'],
['QFEMLBR', 'pos', 'person', 'Female Employment (%)'],
['QEXTRCT_ALT', 'pos', 'person',

'Extractive Sector Employment (%)'],
['QSERV_ALT', 'pos', 'person', 'Service Sector Employment (%)'],
['QSSBEN', 'pos', 'hu', 'Social Security Income (%)'],
['QNOAUTO_ALT', 'pos', 'hu', 'No Automobile (%)'],
['QFAM', 'neg', 'person', 'Children in Married Families (%)'],
['QRICH200K', 'neg', 'hu', 'Annual Income >$200K (%)'],
['MDGRENT_ALT', 'neg', 'hu', 'Median Rent'],
['MHSEVAL_ALT', 'neg', 'hu', 'Median Home Value'],
['POPDENS', 'pos', 'person', 'Population Density']]

20

Get attribute names
attr_names1 = [j[0] for j in input_names] + ['GEOID']
attr_names2 = [j[0] for j in input_names] + ['Geo_FIPS']

Select only the columns needed to compute SoVI
counties = counties[attr_names1]
US_All = US_All[attr_names2]

counties["GEOID"] = "g" + counties["GEOID"]
counties['stateID'] = counties.GEOID.str.slice(0, 3, 1)
attr_names1.remove('GEOID')
counties = counties.set_index(counties["GEOID"]).sort_index()

US_All['stateID'] = US_All.Geo_FIPS.str.slice(0, 3, 1)
attr_names2.remove('Geo_FIPS')
US_All = US_All.set_index(US_All["Geo_FIPS"]).sort_index()

[29]: counties.eq(US_All).sum()

[29]: BLACK_ACS 3143
GEOID 0
Geo_FIPS 0
MDGRENT_ALT 3143
MEDAGE_ACS 3143
MHSEVAL_ALT 3143
PERCAP_ALT 3143
POPDENS 853
PRENTER_ACS 3143
QAGEDEP_ACS 3143
QASIAN_ACS 3143
QCVLUN 3143
QED12LES_ALT 3143
QESL_ALT 3143
QEXTRCT_ALT 3143
QFAM 3143
QFEMALE_ACS 3143
QFEMLBR 3143
QFHH_ACS 3143
QHISP_ACS 3143
QMOHO 3143
QNATAM_ACS 3143
QNOAUTO_ALT 3143
QNRRES_ACS 3143
QPOVTY 3143
QPUNIT_ACS 3143
QRICH200K 3143

21

QSERV_ALT 3143
QSSBEN 3143
QUNOCCHU_ACS 3143
stateID 3143
dtype: int64

Therre are 3143 observations in the dataset, so it appears that all variables match up perfectly
except POPDENS. POPDENS is the one variable that was derived from the land area, so this was
to be expected. Let us confirm that the differences between the two datasets are minor.

[30]: diff = (abs(counties[["POPDENS"]] - US_All[["POPDENS"]]))
print("Maximum difference:", diff.max()[0], "\nAverage difference:", diff.

↪mean()[0])

Maximum difference: 0.949787960271351
Average difference: 0.0015009727346509663

With a maximum difference less than 1 and an average difference less than 0.01, our data is
sufficiently close to Spielman et al.’s for our purposes.

Now we proceed to step P4, switching the directionality of variables as needed in order to ensure
that higher values of a variable are associated with higher levels of vulnerability.

[31]: # Step P4
Flip signs as needed to ensure that each variable contributes as expected to␣

↪the final Sovi
for name, sign, sample, hrname in input_names:

if sign == 'neg':
counties[name] = -counties[name].values
print("Inverting variable:", name)

elif sign == 'pos':
pass

else:
print("problem in flipping signs")
raise

Inverting variable: PERCAP_ALT
Inverting variable: QFAM
Inverting variable: QRICH200K
Inverting variable: MDGRENT_ALT
Inverting variable: MHSEVAL_ALT

A final step of data transformation will be performed at the beginning of the SoVI model analysis.
Each demographic variable will be normalized by calculating its z-score.

1.2.4 Analysis

Principal Component Analysis Spielman et al. constructed a class to conduct SPSS-style
PCA with varimax rotation in python and validated their procedure against Cutter et al.’s SPSS
workflow used to calculate SoVI. Below I include a workflow diagram that shows, without too much

22

detail, the main operations and important outputs of their SPSS_PCA class. After that, I have
included their relevant code.

[32]: class SPSS_PCA:
'''
A class that integrates most (all?) of the assumptions SPSS imbeds in␣

↪their
implimnetation of principal components analysis (PCA), which can be found in
thier GUI under Analyze > Dimension Reduction > Factor. This class is not

intended to be a full blown recreation of the SPSS Factor Analysis GUI,␣
↪but

it does replicate (possibly) the most common use cases. Note that this␣
↪class

will not produce exactly the same results as SPSS, probably due to␣
↪differences

in how eigenvectors/eigenvalues and/or singular values are computed.␣
↪However,

this class does seem to get all the signs to match, which is not really␣
↪necessary

but kinda nice. Most of the approach came from the official SPSS␣
↪documentation.

References

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/

↪statistics/20.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
http://spssx-discussion.1045642.n5.nabble.com/

↪Interpretation-of-PCA-td1074350.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.WhiteningNode-class.

↪html
https://github.com/mdp-toolkit/mdp-toolkit/blob/master/mdp/nodes/

↪pca_nodes.py

23

Parameters

inputs: numpy array

n x k numpy array; n observations and k variables on␣
↪each observation

reduce: boolean (default=False)
If True, then use eigenvalues to determine which␣

↪factors to keep; all
results will be based on just these factors. If False␣

↪use all factors.
min_eig: float (default=1.0)

If reduce=True, then keep all factors with an␣
↪eigenvalue greater than

min_eig. SPSS default is 1.0. If reduce=False, then␣
↪min_eig is ignored.

varimax: boolean (default=False)
If True, then apply a varimax rotation to the results.␣

↪If False, then
return the unrotated results only.

Attributes

z_inputs: numpy array

z-scores of the input array.
comp_mat: numpy array

Component matrix (a.k.a, "loadings").
scores: numpy array

New uncorrelated vectors associated with each␣
↪observation.

eigenvals_all: numpy array
Eigenvalues associated with each factor.

eigenvals: numpy array
Subset of eigenvalues_all reflecting only those␣

↪that meet the
criterion defined by parameters reduce and␣

↪min_eig.
weights: numpy array

Values applied to the input data (after␣
↪z-scores) to get the PCA

scores. "Component score coefficient matrix" in␣
↪SPSS or

"projection matrix" in the MDP library.
comms: numpy array

Communalities
sum_sq_load: numpy array

Sum of squared loadings.

24

comp_mat_rot: numpy array or None
Component matrix after rotation. Ordered from␣

↪highest to lowest
variance explained based on sum_sq_load_rot.␣

↪None if varimax=False.
scores_rot: numpy array or None

Uncorrelated vectors associated with each␣
↪observation, after

rotation. None if varimax=False.
weights_rot: numpy array or None

Rotated values applied to the input data (after␣
↪z-scores) to get

the PCA scores. None if varimax=False.
sum_sq_load_rot: numpy array or None

Sum of squared loadings for rotated results.␣
↪None if

varimax=False.

'''

def __init__(self, inputs, reduce=False, min_eig=1.0, varimax=False):
Step S1

z_inputs = ZSCORE(inputs) # seems necessary for SPSS␣
↪"correlation matrix" setting (their default)

The rest is step S2
run base SPSS-style PCA to get all eigenvalues
pca_node = MDP.nodes.WhiteningNode() # settings for the PCA
scores = pca_node.execute(z_inputs) # base run PCA
eigenvalues_all = pca_node.d # rename PCA results

run SPSS-style PCA based on user settings
pca_node = MDP.nodes.WhiteningNode(reduce=reduce,␣

↪var_abs=min_eig) # settings for the PCA
scores = pca_node.execute(z_inputs) # run PCA (these have␣

↪mean=0, std_dev=1)
weights = pca_node.v # rename PCA results (these might be a␣

↪transformation of the eigenvectors)
eigenvalues = pca_node.d # rename PCA results
component_matrix = weights * eigenvalues # compute the loadings
component_matrix = self._reflect(component_matrix) # get␣

↪signs to match SPSS
communalities = (component_matrix**2).sum(1) # compute the␣

↪communalities
sum_sq_loadings = (component_matrix**2).sum(0) # note that this␣

↪is the same as eigenvalues

25

weights_reflected = component_matrix/eigenvalues # get signs␣
↪to match SPSS

scores_reflected = np.dot(z_inputs, weights_reflected) # note␣
↪that abs(scores)=abs(scores_reflected)

if varimax:
SPSS-style varimax rotation prep
c_normalizer = 1. / MDP.numx.sqrt(communalities) #␣

↪used to normalize inputs to varimax
c_normalizer.shape = (component_matrix.shape[0],1) #␣

↪reshape to vectorize normalization
cm_normalized = c_normalizer * component_matrix #␣

↪normalize component matrix for varimax

varimax rotation
cm_normalized_varimax = self._varimax(cm_normalized) #␣

↪run varimax
c_normalizer2 = MDP.numx.sqrt(communalities) # used to␣

↪denormalize varimax output
c_normalizer2.shape = (component_matrix.shape[0],1) #␣

↪reshape to vectorize denormalization
cm_varimax = c_normalizer2 * cm_normalized_varimax #␣

↪denormalize varimax output

reorder varimax component matrix
sorter = (cm_varimax**2).sum(0) # base the ordering on␣

↪sum of squared loadings
sorter = zip(sorter.tolist(), range(sorter.shape[0])) ␣

↪# add index to denote current order
sorter = sorted(sorter, key=itemgetter(0),␣

↪reverse=True) # sort from largest to smallest
sum_sq_loadings_varimax, reorderer = zip(*sorter) #␣

↪unzip the sorted list
sum_sq_loadings_varimax = np.

↪array(sum_sq_loadings_varimax) # convert to array
cm_varimax = cm_varimax[:,reorderer] # reorder␣

↪component matrix

varimax scores
cm_varimax_reflected = self._reflect(cm_varimax) # get␣

↪signs to match SPSS
varimax_weights = np.dot(cm_varimax_reflected,

np.linalg.inv(np.
↪dot(cm_varimax_reflected.T,

␣
↪cm_varimax_reflected))) # CM(CM'CM)^-1

26

scores_varimax = np.dot(z_inputs, varimax_weights)
else:

comp_mat_rot = None
scores_rot = None
weights_rot = None

assign output variables
self.z_inputs = z_inputs
self.scores = scores_reflected
self.comp_mat = component_matrix
self.eigenvals_all = eigenvalues_all
self.eigenvals = eigenvalues
self.weights = weights_reflected
self.comms = communalities
self.sum_sq_load = sum_sq_loadings
self.comp_mat_rot = cm_varimax_reflected
self.scores_rot = scores_varimax # PCA scores output
self.weights_rot = varimax_weights # PCA weights output
self.sum_sq_load_rot = sum_sq_loadings_varimax

def _reflect(self, cm):
reflect factors with negative sums; SPSS default
cm = copy.deepcopy(cm)
reflector = cm.sum(0)
for column, measure in enumerate(reflector):

if measure < 0:
cm[:,column] = -cm[:,column]

return cm

def _varimax(self, Phi, gamma = 1.0, q = 100, tol = 1e-6):
downloaded from http://en.wikipedia.org/wiki/

↪Talk%3aVarimax_rotation
also here http://stackoverflow.com/questions/17628589/

↪perform-varimax-rotation-in-python-using-numpy
p,k = Phi.shape
R = np.eye(k)
d=0
for i in range(q):

d_old = d
Lambda = np.dot(Phi, R)
u,s,vh = np.linalg.svd(np.dot(Phi.T,np.

↪asarray(Lambda)**3 - (gamma/p) *
np.dot(Lambda, np.

↪diag(np.diag(np.dot(Lambda.T,Lambda))))))
R = np.dot(u,vh)
d = np.sum(s)
if d_old!=0 and d/d_old < 1 + tol:

27

break
return np.dot(Phi, R)

Basic set-up for storing results
[33]: # Build FEMA subRegions Dict values= state ID's

FEMA_subs = dict()
FEMA_subs['FEMA_1'] = ['g23g33g25', 'g50', 'g09', 'g44']
FEMA_subs['FEMA_2'] = ['g36', 'g34']
FEMA_subs['FEMA_3'] = ['g42', 'g10', 'g11', 'g24', 'g51', 'g54']
FEMA_subs['FEMA_4'] = ['g21', 'g47', 'g37', 'g28', 'g01', 'g13', 'g45', 'g12']
FEMA_subs['FEMA_5'] = ['g27', 'g55', 'g26', 'g17', 'g18', 'g39']
FEMA_subs['FEMA_6'] = ['g35', 'g48', 'g40', 'g05', 'g22']
FEMA_subs['FEMA_7'] = ['g31', 'g19', 'g20', 'g29']
FEMA_subs['FEMA_8'] = ['g30', 'g38', 'g56', 'g46', 'g49', 'g08']
FEMA_subs['FEMA_9'] = ['g06', 'g32', 'g04']
FEMA_subs['FEMA_10'] = ['g53', 'g41', 'g16']

####################################
DataFrames to hold US, FEMA region, and state level results
####################################

Dict to hold variable loadings
key will be [USA, Fema_region, stateid] depending on level of analysis
varContrib = {}

National Score
US_Sovi_Score = pd.DataFrame(index=counties.GEOID,

columns=['sovi', 'rank'])

In the FEMA_Region_Sovi_Score data frame ranks are BY FEMA REGION.
The data frame holds both the SOVI score and the county rank
This means that there should be 10 counties with rank 1 (one for each
FEMA Region)
FEMA_Region_Sovi_Score = pd.DataFrame(index=counties.GEOID,

columns=['sovi', 'rank', 'fema_region'])

Create New England conglomerate of states
These are the FIPS codes for the states with the letter "g" appended
counties.loc[counties.stateID.isin(['g23', 'g33', 'g25']), 'stateID'] =␣

↪'g23g33g25'

These are the states in the state level analysis
stateList = ['g23g33g25', 'g36', 'g51', 'g13',

'g17', 'g48', 'g29', 'g46', 'g06', 'g16']

In the State_Sovi_Score data frame ranks are BY STATE.
The data frame holds both the SOVI score and the county rank

28

This means that there should be 10 counties with rank 1 (one for each
state in stateList)
State_Sovi_Score = pd.DataFrame(

index=counties.index[counties.stateID.isin(stateList)],
columns=['sovi', 'rank', 'state_id'])

Calculating SoVI At this stage, we seek to calculate the SoVI ranks and variable weightings
on the national, FEMA region, and state-level spatial extents. Below is a workflow for calculating
SoVI, followed by the code for each spatial extent.

[34]: #######################
Compute National SoVI
#######################
compute SoVI
Step M2
inputData = counties.drop(['GEOID', 'stateID'], axis=1, inplace=False)

Step M3
inputData_array = inputData.values # Convert DataFrame to NumPy array

Step M4
pca = SPSS_PCA(inputData_array, reduce=True, varimax=True)

Step M5
sovi_actual_us = pca.scores_rot.sum(1)

Step M6
sovi_actual_us = pd.DataFrame(

sovi_actual_us, index=counties.GEOID, columns=['sovi'])

Step M8
sovi_actual_us['rank'] = sovi_actual_us.rank(

method='average', ascending=False)
US_Sovi_Score.update(sovi_actual_us)

Step M9
attrib_contribution_us = pca.weights_rot.sum(1)

29

varContrib['USA'] = zip(attr_names1, attrib_contribution_us.tolist()) #␣
↪Generate dictionary for all net loadings by variable for US

Quick check of ranks: max should equal number of counties in US
try:

US_Sovi_Score['rank'].max() == len(counties)
except:

print("error in ranking check")
raise

cleanup
del inputData
del inputData_norm
del sovi_actual_us
del attrib_contribution_us

[35]: ###########################
Compute FEMA Region SoVI
###########################
for i in FEMA_subs:

Step M1: Subset FEMA subregion
FEMARegionData = counties[counties['stateID'].isin(FEMA_subs[i])]

Step M2
inputData = FEMARegionData.drop(

['GEOID', 'stateID'], axis=1, inplace=False)

Step M3
inputData_array = inputData.values # Convert DataFrame to NumPy array

Step M4
pca = SPSS_PCA(inputData_array, reduce=True, varimax=True)

Step M5
sovi_actual_fema = pca.scores_rot.sum(1)

Step M6
sovi_actual_fema = pd.DataFrame(

sovi_actual_fema, index=FEMARegionData.index, columns=['sovi'])

Step M7
sovi_actual_fema['fema_region'] = i

Step M8
sovi_actual_fema['rank'] = sovi_actual_fema['sovi'].rank(

method='average', ascending=False)

30

FEMA_Region_Sovi_Score.update(sovi_actual_fema)

Step M9
attrib_contribution_fema = pca.weights_rot.sum(1)
varContrib[i] = zip(attr_names1, attrib_contribution_fema.tolist())

cleanup
del FEMARegionData
del inputData
del sovi_actual_fema
del attrib_contribution_fema

[36]: ############################
Compute State Level SoVI
############################
for st in stateList:

Step M1: Subset FEMA subregion
stateData = counties[counties.stateID == st]

Step M2
inputData = stateData.drop(['GEOID', 'stateID'], axis=1, inplace=False)

Step M3
inputData_array = inputData.values # Convert DataFrame to NumPy array

Step M4
pca = SPSS_PCA(inputData_array, reduce=True, varimax=True)

Step M5
sovi_actual = pca.scores_rot.sum(1)

Step M6
sovi_actual = pd.DataFrame(

sovi_actual, index=stateData.index, columns=['sovi'])

Step M7
sovi_actual['state_id'] = st

Step M8
sovi_actual['rank'] = sovi_actual['sovi'].rank(

method='average', ascending=False)
State_Sovi_Score.update(sovi_actual)

Step M9
attrib_contribution = pca.weights_rot.sum(1)
varContrib[st] = zip(attr_names1, attrib_contribution.tolist())

31

cleanup
del stateData
del inputData
del sovi_actual
del attrib_contribution

Internal consistency analysis Now that we have generated the SoVI scores for the 21 different
models, we turn to our analysis of internal consistency.

This analysis checks for consistent SoVI rankings of counties in a region of interest (a state or
group of small states) through three versions of a SoVI model, each using a different geographic
extent for input data. Those extents are: 1) all counties in the country, 2) all the counties in a
FEMA region, and 3) all counties in a single state or group of small states. The SoVI scores for
the counties in the region of interest are selected and ranked. The agreement between the three
sets of rankings is calculated using the Spearman’s Rho rank correlation coefficient. If the model is
internally consistent, one could expect a nearly perfect positive rank correlation close to 1, implying
that counties have similar levels of social vulnerability vis a vis one another in the region of interest,
regardless of how much extraneous information from other counties in the FEMA region or from
the whole United States has been included in the SoVI model.

32

[37]: ##
Ranks w/ Geographic Extent
For each county rank within state for US, state, and fema_region sovis
##

Step IC1: Create an empty DataFrame with a column for each SoVI spatial␣
↪extent and an index of each county FIPS code in the selected state(s) of the␣
↪10 FEMA regions

county_in_state_rank = pd.DataFrame(index=State_Sovi_Score.index,
columns=['state_sovi_rank',␣

↪'fema_region_sovi_rank', 'us_sovi_rank'])

33

for st in stateList:
if st == 'g23g33g25':

Step IC2: Select the index and SoVI scores from national model for␣
↪Maine, New Hampshire, and Massachusetts

st_cty_scores1 = US_Sovi_Score.loc[['g23' in s for s in US_Sovi_Score.
↪index], 'sovi']

st_cty_scores2 = US_Sovi_Score.loc[['g33' in s for s in US_Sovi_Score.
↪index], 'sovi']

st_cty_scores3 = US_Sovi_Score.loc[['g25' in s for s in US_Sovi_Score.
↪index], 'sovi']

st_cty_scores = pd.concat([st_cty_scores1, st_cty_scores2,␣
↪st_cty_scores3])

Step IC3: Re-rank the national SoVI scores but just for the counties␣
↪in the relevant states

county_in_state_rank.loc[st_cty_scores.index, 'us_sovi_rank'] =␣
↪st_cty_scores.rank(method='average', ascending=False)

Step IC4: Select the index and SoVI scores from FEMA model for Maine,␣
↪New Hampshire, and Massachusetts

st_cty_scores1 = FEMA_Region_Sovi_Score.loc[['g23' in s for s in␣
↪FEMA_Region_Sovi_Score.index], 'sovi']

st_cty_scores2 = FEMA_Region_Sovi_Score.loc[['g33' in s for s in␣
↪FEMA_Region_Sovi_Score.index], 'sovi']

st_cty_scores3 = FEMA_Region_Sovi_Score.loc[['g25' in s for s in␣
↪FEMA_Region_Sovi_Score.index], 'sovi']

st_cty_scores = pd.concat([st_cty_scores1, st_cty_scores2,␣
↪st_cty_scores3])

Step IC5: Re-rank the FEMA SoVI scores but just for the counties in␣
↪the relevant states

county_in_state_rank.loc[st_cty_scores.index, 'fema_region_sovi_rank']␣
↪= st_cty_scores.rank(method='average', ascending=False)

Step IC6: Pull the state-only SoVI ranks into the same dataframe as␣
↪the other data

county_in_state_rank.loc[st_cty_scores.index, 'state_sovi_rank'] =␣
↪State_Sovi_Score.loc[State_Sovi_Score['state_id'] == 'g23g33g25', 'rank']

else:
Step IC2: select the index and SoVI scores from national model for␣

↪the relevant state
st_cty_scores = US_Sovi_Score.loc[[st in s for s in US_Sovi_Score.

↪index], 'sovi']

34

Step IC3: Re-rank the national SoVI scores but just for the counties␣
↪in the relevant state

county_in_state_rank.loc[st_cty_scores.index, 'us_sovi_rank'] =␣
↪st_cty_scores.rank(method='average', ascending=False)

Step IC4: Select the index and SoVI scores from FEMA model for the␣
↪relevant state

st_cty_scores = FEMA_Region_Sovi_Score.loc[[st in s for s in␣
↪FEMA_Region_Sovi_Score.index], 'sovi']

Step IC5: Re-rank the FEMA SoVI scores but just for the counties in␣
↪the relevant state

county_in_state_rank.loc[st_cty_scores.index, 'fema_region_sovi_rank']␣
↪= st_cty_scores.rank(method='average', ascending=False)

Step IC6: Pull the state-only SoVI ranks into the same dataframe as␣
↪the other data

county_in_state_rank.loc[st_cty_scores.index, 'state_sovi_rank'] =␣
↪State_Sovi_Score.loc[State_Sovi_Score['state_id'] == st, 'rank']

[38]: ######################
CORRELATIONS
######################

Step IC 7: Create an empty DataFrame to hold Spearman test results
state_corrs = pd.DataFrame(index = stateList, columns = ['spearman_r_st_fema',␣

↪'pvalue_st_fema', 'spearman_r_st_us', 'pvalue_st_us'])

for st in stateList:
if st == 'g23g33g25':

Step IC8: Calculate spearman correlation between state and FEMA, state␣
↪and national

multi_state_data_tmp1 = county_in_state_rank.loc[['g23' in s for s in␣
↪county_in_state_rank.index],]

multi_state_data_tmp2 = county_in_state_rank.loc[['g25' in s for s in␣
↪county_in_state_rank.index],]

multi_state_data_tmp3 = county_in_state_rank.loc[['g33' in s for s in␣
↪county_in_state_rank.index],]

multi_state_data_tmp = pd.concat([multi_state_data_tmp1,␣
↪multi_state_data_tmp2, multi_state_data_tmp3])

st_fema_spearman = spearmanr(multi_state_data_tmp[['state_sovi_rank',␣
↪'fema_region_sovi_rank']])

st_us_spearman = spearmanr(multi_state_data_tmp[['state_sovi_rank',␣
↪'us_sovi_rank']])

state_corrs.loc['g23g33g25',] = [st_fema_spearman[0], st_fema_spearman[1],␣
↪st_us_spearman[0], st_us_spearman[1]]

35

else:
Step IC8: Calculate spearman correlation between state and FEMA, state␣

↪and national
st_fema_spearman = spearmanr(county_in_state_rank.loc[[st in s for s in␣

↪county_in_state_rank.index], ['state_sovi_rank', 'fema_region_sovi_rank']])
st_us_spearman = spearmanr(county_in_state_rank.loc[[st in s for s in␣

↪county_in_state_rank.index], ['state_sovi_rank', 'us_sovi_rank']])
state_corrs.loc[st,] = [st_fema_spearman[0], st_fema_spearman[1],␣

↪st_us_spearman[0], st_us_spearman[1]]

Theoretical consistency analysis Finally, we investigate the questions surrounding theoretical
consistency.

This analysis checks for consistent signs and ranks of variables across the same 21 models that were
used in the internal consistency analysis. To evaluate the signs and ranks of variables, we sum all
components together, producing one vector for each model containing the net effect of each variable
on the SoVI score. Theoretical consistency is indicated by little variation amongst all models in
the signs and magnitudes of variable weights. Theoretical inconsistency is indicated by substantial
variation in the signs and weights of variables and by disagreement between a variable’s theoretical
influence and modeled influence on vulnerability.

Unplanned deviation: we were unable to find all of the code for this part the analysis, so we
wrote much of this code ourselves.

[39]: # Step TC1: Create a DataFrame to hold variable contributions values
variable_contributions = pd.DataFrame(index=attr_names1)

36

Step TC2: Add variable contributions values to DataFrame
for area in varContrib.keys():

variable_contributions[area] = [x for i, x in varContrib[area]]

Step TC3: For all SoVI models, rank variables from the greatest to the least␣
↪magnitudes

rankContrib = abs(variable_contributions).apply(rankdata, axis=0,␣
↪method='average')

rankContrib = (28-rankContrib) + 1

Step TC4: Sort variable rankings according to national model's most to least␣
↪important

rankContrib = rankContrib.sort_values("USA", ascending = True).reset_index()
rankContrib.index = rankContrib["index"]
rankContrib = rankContrib.drop(columns = ["index"])

Step TC5: Calculate summary statistics for each variable
summary_stats = pd.DataFrame({"Min": rankContrib.min(axis = 1).round(),

"Max": rankContrib.max(axis = 1).round(),
"Range": rankContrib.max(axis = 1) - rankContrib.

↪min(axis = 1).round(),
"Average": rankContrib.mean(axis = 1).round(2)
})

Step TC6: determine signs of USA model
def pos_neg(x):

if x > 0:
return "+"

else:
return "-"

usa = variable_contributions["USA"].apply(pos_neg)

Step TC7: Determine all positive/negatives
reversals_adj = variable_contributions < 0

Step TC8: Separate data
reference = reversals_adj[["USA"]]
other_vars = reversals_adj.drop(columns = ["USA"])

Step TC9: Determine all reversals from expected sign
for i in range(len(other_vars.columns)):

other_vars.iloc[:, i] = reversals_adj["USA"].eq(other_vars.iloc[:, i]).
↪eq(False)

Step TC10: calculate reversals
reversal_sum = pd.DataFrame({"Reversals": other_vars.sum(axis = 1)})

37

Step TC11: Join data
summary_stats = summary_stats.merge(reversal_sum, left_index = True,␣

↪right_index = True)

Step TC12: Join data
summary_stats = summary_stats.merge(usa, left_index = True, right_index = True)

Step TC13: Change index labels to reflect any changes prior to SoVI␣
↪calculation

for name, sign, sample, hrname in input_names:
if sign == 'neg':

summary_stats = summary_stats.rename(index={name: '- '+ name})
else:

pass

Table aesthetics edits
summary_stats = summary_stats.rename(columns={"USA": "National Model"})
summary_stats = summary_stats.loc[:,['National Model', 'Reversals', 'Min',␣

↪'Average', 'Max', 'Range']]

We made a different choice than Spielman et al. in this table. Since we adjusted all variables such
that larger values are theoretically associated with a higher degree of vulnerability before calculat-
ing SoVI, we would expect all outputs to be positive. In Spielman et al.’s “expected contribution”
column, some signs were negative – they recorded the directionality we would expect of the variables
if they had made no adjustments before calculating SoVI. This leads to a misleading table because
their “original contribution” column displays the signs of the model output including prior adjust-
ments to directionaity, but the “expected contribution” column displays the signs if the model had
not adjusted directionality. To make their “expected contribution” column consistent with their
“original contribution” column, they would need all of the signs to be positive in the “expected
contribution” column. We choose to simply not include an “expected contribution” column since
there would be no variation within it anyway. Additionally, we add a negative sign in front of any
variables that we changed the directionality of for the sake of clarity.

Save analysis results
[40]: ###

OUTPUT TABLES
###
US_Sovi_Score.to_csv(here(path["ddpub"], 'US_Sovi_Score.csv'))

In the FEMA_Region_Sovi_Score data frame ranks are BY FEMA REGION.
The data frame holds both the SOVI score and the county rank
This means that there should be 10 counties with rank 1 (one for each
FEMA Region)
FEMA_Region_Sovi_Score.to_csv(here(path["ddpub"], 'FEMA_Region_Sovi_Score.

↪csv'))

In the State_Sovi_Score data frame ranks are BY STATE.

38

The data frame holds both the SOVI score and the county rank
This means that there should be 10 counties with rank 1 (one for each
state in stateList)
State_Sovi_Score.to_csv(here(path["ddpub"], 'State_Sovi_Score.csv'))

County rank within state for US, state, and fema_region sovis
county_in_state_rank.to_csv(here(path["ddpub"], 'County_in_State_Rank.csv'))

Variable contributions for sovis at all geographic extents
variable_contributions.to_csv(here(path["ddpub"], 'variable_contributions.

↪csv'))

Correlation of ranks
state_corrs.to_csv(here(path["ddpub"], 'state_fema_us_rank_correlations.csv'))

1.3 Results
1.3.1 Rpr-H1

First, we tested RPr-H1, that reproduced SoVI model scores for each county are not identical to
the original study SoVI model scores for each county for each of the 21 SoVI models.

We define a function, check_it to check equivalency of the original output files to our reproduced
output files.

[41]: def check_it(file, rounder = False):
'''
Given a file name, this function finds the corresponding file provided by␣

↪Spielman et al. and the file produced
by our code and returns the number of matches for each column.
'''
global rpl
global og
global test

rpl = pd.read_csv(here(path["ddpub"], file))
og = pd.read_csv(here(path["og_out"], file))
og = og.rename(columns = {"Geo_FIPS": "GEOID"})

if "sovi" in rpl.columns:
rpl["sovi"] = rpl["sovi"].round(2)
og["sovi"] = og["sovi"].round(2)

if "Unnamed: 0" in rpl.columns:
rpl.index = rpl["Unnamed: 0"]
rpl = rpl.drop(columns = ["Unnamed: 0"])

if "Unnamed: 0" in og.columns:

39

og.index = og["Unnamed: 0"]
og = og.drop(columns = ["Unnamed: 0"])

if rounder != False:
og = og.round(rounder)
rpl = rpl.round(rounder)

test = rpl.eq(og)

if test.sum().eq(len(rpl)).sum() == len(test.sum()):
return print("All values match!")

else:
return test.sum()

US SoVI Scores & Rankings
[42]: check_it('US_Sovi_Score.csv')

[42]: GEOID 3143
sovi 3143
rank 3141
dtype: int64

[43]: merged = og.merge(rpl, how = "inner", on = "GEOID")
merged.loc[~test["rank"]]

[43]: GEOID sovi_x rank_x sovi_y rank_y
1150 g22075 -4.53 2984.0 -4.53 2983.0
3120 g56001 -4.53 2983.0 -4.53 2984.0

We have identically reproduced national SoVI scores (rounded to 2 decimal points) for all 3143
counties compared to the original study, but two county ranks are different, probably due to the
small differences between our area column and theirs.

FEMA Region SoVI Scores & Rankings
[44]: check_it('FEMA_Region_Sovi_Score.csv')

[44]: GEOID 3143
sovi 3109
rank 3109
fema_region 3109
dtype: int64

Our check it function found potential differences in 34 counties. The following table shows the
SoVI scores and ranks for those counties.

[45]: merged = og.merge(rpl, how = "inner", on = "GEOID")
merged.loc[~test["rank"] | ~test["sovi"] | ~test["fema_region"]]#.head()

40

[45]: GEOID sovi_x rank_x fema_region_x sovi_y rank_y fema_region_y
67 g02013 NaN NaN NaN NaN NaN NaN
68 g02016 NaN NaN NaN NaN NaN NaN
69 g02020 NaN NaN NaN NaN NaN NaN
70 g02050 NaN NaN NaN NaN NaN NaN
71 g02060 NaN NaN NaN NaN NaN NaN
72 g02068 NaN NaN NaN NaN NaN NaN
73 g02070 NaN NaN NaN NaN NaN NaN
74 g02090 NaN NaN NaN NaN NaN NaN
75 g02100 NaN NaN NaN NaN NaN NaN
76 g02105 NaN NaN NaN NaN NaN NaN
77 g02110 NaN NaN NaN NaN NaN NaN
78 g02122 NaN NaN NaN NaN NaN NaN
79 g02130 NaN NaN NaN NaN NaN NaN
80 g02150 NaN NaN NaN NaN NaN NaN
81 g02164 NaN NaN NaN NaN NaN NaN
82 g02170 NaN NaN NaN NaN NaN NaN
83 g02180 NaN NaN NaN NaN NaN NaN
84 g02185 NaN NaN NaN NaN NaN NaN
85 g02188 NaN NaN NaN NaN NaN NaN
86 g02195 NaN NaN NaN NaN NaN NaN
87 g02198 NaN NaN NaN NaN NaN NaN
88 g02220 NaN NaN NaN NaN NaN NaN
89 g02230 NaN NaN NaN NaN NaN NaN
90 g02240 NaN NaN NaN NaN NaN NaN
91 g02261 NaN NaN NaN NaN NaN NaN
92 g02270 NaN NaN NaN NaN NaN NaN
93 g02275 NaN NaN NaN NaN NaN NaN
94 g02282 NaN NaN NaN NaN NaN NaN
95 g02290 NaN NaN NaN NaN NaN NaN
546 g15001 NaN NaN NaN NaN NaN NaN
547 g15003 NaN NaN NaN NaN NaN NaN
548 g15005 NaN NaN NaN NaN NaN NaN
549 g15007 NaN NaN NaN NaN NaN NaN
550 g15009 NaN NaN NaN NaN NaN NaN

These 34 counties are missing data in both the original study and our reproduction study. The
counties and county equivalents are all located in Hawaii (FIPS code 15) and Alaska (FIPS code
02). In Spielman et al.’s code, when they define the states in FEMA region IX, they do not include
HI, and when they define the states in FEMA region X, they do not include AK. All differences
here arise from missing data in analogous places in both my output and theirs. This result was
successfully reproduced.

State SoVI Scores & Rankings
[46]: check_it('State_Sovi_Score.csv')

All values match!

We have identically reproduced SoVI scores for all state models.

41

County in State Rank
[47]: check_it("County_in_State_Rank.csv")

All values match!

We have identically reproduced the SoVI rankings in the state(s) of interest for all 21 models.

Variable Contributions
[48]: check_it("variable_contributions.csv", rounder = 3)

All values match!

When rounded to 3 decimal places, we have successfully reproduced all variable contributions for
all models.

State FEMA US Rank Correlations
[49]: check_it("state_fema_us_rank_correlations.csv", rounder = 14)

All values match!

When rounded to 14 decimal places, we have succesfully reproduced all Spearman’s rank correla-
tions.

1.3.2 RPr-H2

Next, we tested RPr-H2, that reproduced figures and tables for the internal consistency analysis
are not identical to the figures and tables of the original study.

Figure 1
[50]: # Read files

counties = gpd.read_file(here(path["ddpub"], "counties.gpkg"))
USA = pd.read_csv(here(path["ddpub"], "US_Sovi_Score.csv")).rename(␣

↪columns={"sovi": "sovi_USA"})
FEMA = pd.read_csv(here(path["ddpub"], "FEMA_Region_Sovi_Score.csv")).rename(␣

↪columns={"sovi": "sovi_FEMA"})
CA = pd.read_csv(here(path["ddpub"], "State_Sovi_Score.csv")).rename(␣

↪columns={"sovi": "sovi_CA"})

[51]: # Edit counties GEOID to match other datasets
counties["GEOID"] = "g" + counties["GEOID"]

Select just the rows and columns needed
counties_CA = counties.loc[counties["STATE"] == "06"]
counties_CA = counties_CA[["GEOID", "geometry"]]

Join all datasets
counties_CA = counties_CA.merge(USA, on = "GEOID")
counties_CA = counties_CA.merge(FEMA, on = "GEOID")
counties_CA = counties_CA.merge(CA, on = "GEOID")

42

counties_CA['rank_USA'] = counties_CA['sovi_USA'].rank(method='average',␣
↪ascending=False)

counties_CA['rank_FEMA'] = counties_CA['sovi_FEMA'].rank(method='average',␣
↪ascending=False)

counties_CA['rank_CA'] = counties_CA['sovi_CA'].rank(method='average',␣
↪ascending=False)

mycolor = ListedColormap('#DBDBDB')

[52]: # Create overarching plot
fig, ax = plt.subplots(1, 4, figsize=(20, 8))

fig.tight_layout()

ax[0].axis('off')
ax[1].axis('off')
ax[2].axis('off')
ax[3].axis('off');

Create CA rank map
top5_CA = counties_CA.loc[counties_CA["rank_CA"] < 6]
bottom5_CA = counties_CA.loc[counties_CA["rank_CA"] > 53]
ax[0].set_title("(a) California Analysis")
counties_CA.plot(ax = ax[0], cmap = mycolor, edgecolor = 'black', linewidth = .

↪1)
top5_CA.plot(ax = ax[0], column = "rank_CA", cmap = "Reds_r")
top5_CA.apply(lambda x: ax[0].text(s=round(x['rank_CA']), color = 'black', x=x.

↪geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

bottom5_CA.plot(ax = ax[0], column = "rank_CA", cmap = "Blues");
bottom5_CA.apply(lambda x: ax[0].text(s=round(x['rank_CA']), color = 'black',␣

↪x=x.geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

Create FEMA rank map
top5_CA = counties_CA.loc[counties_CA["rank_FEMA"] < 6]
bottom5_CA = counties_CA.loc[counties_CA["rank_FEMA"] > 53]
ax[1].set_title("(b) FEMA Region IX Analysis")
counties_CA.plot(ax = ax[1], cmap = mycolor, edgecolor = 'black', linewidth = .

↪1)
top5_CA.plot(ax = ax[1], column = "rank_FEMA", cmap = "Reds_r")
top5_CA.apply(lambda x: ax[1].text(s=round(x['rank_FEMA']), color = 'black',␣

↪x=x.geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

43

bottom5_CA.plot(ax = ax[1], column = "rank_FEMA", cmap = "Blues");
bottom5_CA.apply(lambda x: ax[1].text(s=round(x['rank_FEMA']), color = 'black',␣

↪x=x.geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

Create USA rank map
top5_CA = counties_CA.loc[counties_CA["rank_USA"] < 6]
bottom5_CA = counties_CA.loc[counties_CA["rank_USA"] > 53]
ax[2].set_title("(c) United States Analysis")
counties_CA.plot(ax = ax[2], cmap = mycolor, edgecolor = 'black', linewidth = .

↪1)
top5_CA.plot(ax = ax[2], column = "rank_USA", cmap = "Reds_r")
top5_CA.apply(lambda x: ax[2].text(s=round(x['rank_USA']), color = 'black', x=x.

↪geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

bottom5_CA.plot(ax = ax[2], column = "rank_USA", cmap = "Blues");
bottom5_CA.apply(lambda x: ax[2].text(s=round(x['rank_USA']), color = 'black',␣

↪x=x.geometry.centroid.coords[0][0], y=x.geometry.centroid.coords[0][1],␣
↪ha='center', path_effects=[pe.withStroke(linewidth=1.5,␣
↪foreground="white")]), axis=1,);

Create range rank map
ax[3].set_title("(d) Range of SoVI Rankings")
counties_CA["min_rank"] = counties_CA[["rank_USA", "rank_FEMA", "rank_CA"]].

↪min(axis = 1)
counties_CA["max_rank"] = counties_CA[["rank_USA", "rank_FEMA", "rank_CA"]].

↪max(axis = 1)
counties_CA["range_rank"] = counties_CA["max_rank"] - counties_CA["min_rank"]
counties_CA.plot(ax = ax[3], column = "range_rank", cmap = "Reds", edgecolor =␣

↪'black', linewidth = .1, scheme="User_Defined",
legend=True, classification_kwds=dict(bins=[5,15,25,35,45]));

plt.savefig(here(path["rfig"], 'fig1.png')) # Save image

This figure looks almost the same as Spielman et al.’s. In (a), rank 3 is in a different place; in (b),
rank 4 and rank 5 have switched places, but otherwise everything looks good. Our FEMA and

44

state SoVI score data perfectly matched Spielman et al.’s output, so we are not sure what caused
these differences.

Table 2
[53]: # Read in data

table2 = pd.read_csv(here(path["ddpub"], "state_fema_us_rank_correlations.
↪csv"))

Formatting table
table2.index = table2["Unnamed: 0"]
table2 = table2.drop(columns = ["Unnamed: 0"])
table2["FEMA Region"] = ["I", "II", "III", "IV", "V", "VI", "VII", "VIII",␣

↪"IX", "X"]
table2["All US counties input file versus all counties in a state input file"]␣

↪= table2["spearman_r_st_us"].round(2)
table2["All counties in a FEMA region versus counties in a state within the␣

↪FEMA region input file"] = table2["spearman_r_st_fema"].round(2)
table2["State used for comparison"] = ["Composite of ME, NH, MA", "NY", "VA",␣

↪"GA", "IL", "TX", "MO", "SD", "CA", "ID"]
table2 = table2.transpose().rename_axis('FEMA Region', axis='columns')
table2 = table2.rename(columns=table2.iloc[4])
table2 = table2.drop(labels = ["FEMA Region", "spearman_r_st_fema",␣

↪"spearman_r_st_us"], axis = 0)

[54]: if (table2.loc["pvalue_st_fema"] < 0.01).sum() == 10 and (table2.
↪loc["pvalue_st_us"] < 0.01).sum() == 10:

table2 = table2.drop(["pvalue_st_fema", "pvalue_st_us"])
print("p < 0.01 for all values")

else:
print("Different result than in paper")

p < 0.01 for all values

[55]: table2

[55]: FEMA Region I \
All US counties input file versus all counties … 0.75
All counties in a FEMA region versus counties i… 0.94
State used for comparison Composite of ME, NH, MA

FEMA Region II III IV V \
All US counties input file versus all counties … 0.79 0.68 0.5 0.5
All counties in a FEMA region versus counties i… 0.61 0.9 0.8 0.34
State used for comparison NY VA GA IL

FEMA Region VI VII VIII IX \
All US counties input file versus all counties … 0.62 0.9 0.61 0.53

45

All counties in a FEMA region versus counties i… 0.68 0.82 0.87 0.69
State used for comparison TX MO SD CA

FEMA Region X
All US counties input file versus all counties … 0.66
All counties in a FEMA region versus counties i… 0.88
State used for comparison ID

All of these numbers match up with those in Spielman et al.’s paper except for one, which is reported
as 0.65 in their paper rather as opposed to a 0.68 in our work. Since we checked that our data
matches their provided output data, they likely made a simple typo when typing up their work for
publication.

[56]: # Save file
table2.to_csv(here(path["rtab"],"table2.csv"))

1.3.3 RPr-H3

Finally, we tested RPr-H3, that reproduced direction reversals and min, average, and max SoVI
rank value of 28 demographic variables are not identical to the direction reversals and min, average,
and max SoVI rank values shown in figure 2 of the original study.

Figure 2
[57]: summary_stats

[57]: National Model Reversals Min Average Max Range
QAGEDEP_ACS + 0 1.0 10.90 24.0 23.0
QFEMALE_ACS + 9 1.0 8.33 28.0 27.0
QSERV_ALT + 3 1.0 12.48 26.0 25.0
QHISP_ACS + 3 2.0 11.00 28.0 26.0
QFEMLBR + 4 1.0 11.62 25.0 24.0
QNATAM_ACS + 9 1.0 9.62 28.0 27.0
QESL_ALT + 4 1.0 11.29 27.0 26.0
QSSBEN + 0 3.0 11.76 21.0 18.0
QNOAUTO_ALT + 0 1.0 14.05 28.0 27.0
QMOHO - 12 2.0 15.29 27.0 25.0
QPOVTY + 0 3.0 11.71 27.0 24.0
QNRRES_ACS + 4 1.0 10.19 22.0 21.0
- QFAM + 2 1.0 13.67 28.0 27.0
QUNOCCHU_ACS + 6 1.0 10.71 20.0 19.0
- PERCAP_ALT + 3 9.0 18.48 28.0 19.0
BLACK_ACS - 12 3.0 17.29 28.0 25.0
- MDGRENT_ALT + 1 8.0 18.29 27.0 19.0
- QRICH200K + 6 3.0 19.19 27.0 24.0
MEDAGE_ACS + 1 8.0 18.19 28.0 20.0
QFHH_ACS + 6 2.0 17.38 28.0 26.0
PRENTER_ACS + 7 3.0 18.57 27.0 24.0
POPDENS + 3 4.0 15.86 26.0 22.0

46

QCVLUN - 15 1.0 13.38 23.0 22.0
- MHSEVAL_ALT + 4 5.0 19.29 28.0 23.0
QED12LES_ALT + 2 4.0 15.00 28.0 24.0
QEXTRCT_ALT + 6 1.0 17.71 28.0 27.0
QASIAN_ACS - 14 4.0 18.71 28.0 24.0
QPUNIT_ACS + 14 2.0 16.05 28.0 26.0

[58]: # Save file
summary_stats.to_csv(here(path["rtab"],"fig2.csv"))

As mentioned in the analysis, we eliminated the “expected” column and added minus signs to
the variable labels where needed to make the figure more interpretable. The “original” column
matches Spielman et al.’s exactly, but the “reversals” column has 2 minor differences: specifically,
in Spielman et al.’s paper, QNOAUTO_ALT has 1 reversal instead of 0 and QEXTRCT_ALT has
7 reversals instead of 6. These are pretty minor differences. Because our variable_contributions
dataset matches Spielman et al.’s data perfectly, our best guess is that the differences are due to
transciption errors when they constructed their figure.

Spielman et al. do not provide exact values for our last 4 columns, but everything looks accurate
when we compare our numbers to their figure.

1.4 Discussion
The goal of this study was to computationally reproduce Spielman et al.’s “Evaluating social vul-
nerability indicators: criteria and their application to the Social Vulnerability Index” (Spielman
et al., 2020). To their credit, Spielman et al. provided their code, data, and metadata in their
sovi-validity GitHub repository, making their analysis transparent, accessible, and reproducible in
a manner that is rare in the field of geography.

We have rejected RPr-H1, finding that our reproductions of each of 21 SoVI models were identical
to the original results, with the possible exception of a few minor changes in county rank caused
by very slightly different calculations of land area and population density. The implication of this
finding is that the codified procedures used in this reproduction study can reliably reproduce and
replicate the SoVI model. Given our rejection of RPr-H1, we were surprised to have difficulty
exactly reproducing RPr-H2 and RPr-H3. Although our results were very similar to figure 1 and
figure 2, we did find a few discrepancies in each figure which we can only assume are related to the
data visualization process in the original study, which was not automated in code.

In addition to checking the original study results, a major aim of this reproduction study was to
improve its computational reproducibility. With all the necessary data and code in one GitHub
repository, we assumed that the computational reproduction would be trivial. However, even with
all of the resources they provided, we still spent a month of full-time work on this project before
successfully reproducing their results. Our experiences working with this data motivated us to
publish this report, so that we can share the obstacles that made the reproduction process so time-
intensive and point out methods that researchers can employ to enhance the reproducibility of their
work.

The main obstacles that stood in the way of reproducing Spielman et al.’s results were: 1. Outdated
packages 2. Extraneous data and code 3. A confusing file system 4. Incomplete code 5. Our own
edits

47

https://github.com/geoss/sovi-validity

Outdated packages The first obstacle, and one that we anticipated because much of Spielman
et al.’s code was written 6 or 7 years ago, was the presence of outdated packages. When working
with code developed on outdated packages, one has the option of adjusting their package versions
or adapting your code to run on current package versions. We opted for the latter because we
found no documentation regarding the package versions used by Spielman et al., and we hope to
use our code in the future for a replication study, preferably operating on an up-to-date software
environment.

One notable package issue occurred because Spielman et al. wrote their code before the refactoring
of PySAL into several submodules that occured with the release of PySAL 2.0.0 in 2019. In
Spielman et al.’s work, functions for calculating contiguity-based spatial weights were included in
the PySAL package, but after the refactoring, this feature is included in the libpysal package.
Without prior familiarity with the intricacies of PySAL’s updates over the years, it took us some
time to locate equivalent functions in the updated package. Changes to PySAL were perhaps the
most time-consuming package update issue, but there were other smaller issues along the way, such
as Pandas’s deprecation of the .ix indexer in favor of .iloc and .loc. Most edits due to package
updates were small, but they all took some time to figure out, time that adds up.

Researchers can eliminate this obstacle to reproducibility by containerizing their work. For this
study in particular, we found that providing a list of required packages and their versions in a text
file was sufficient to reconstruct the environment on another machine.

Extraneous data and code Another issue that required a substantial amount of effort to over-
come was the presence of extraneous data and code. For example, although Spielman et al.’s paper
only mentions 5-year ACS data from 2012, in their data_prep.py file, they also import and ma-
nipulate decennial census variables. Unfortunately, they do not comment their code well-enough
for other researchers to understand why they do this without combing through every line of code.
After some close inspection, we found that all of the decennial variables except for land area are
not used to generate their results, allowing us to discard unused data and a substantial amount of
code. In their data_prep.py code, Spielman et al. also include some analysis of standard errors
that we eventually discovered to be unnecessary.

Several other files in Spielman et al.’s code folder also include extraneous code. In particular, the
entire contents of the drop1_place.py, spearman.py, and visualization.py, as well as portions
of compute_sovis.py implementing a drop1 analysis turned out to be unnecessary to generate the
results they describe in their paper. It seems that Spielman et al. were considering several possible
directions of research, and they left their dead ends in their code. We omit all of the unnecessary
steps in our report, reducing the computational intensity of the analysis and making our work easier
to follow.

While the presence of unnecessary code may not have bothered the original authors of the paper,
in the absence of comments explaining their purpose, extra code makes it far more difficult for an
independent party to understand their work. If one does not quickly realize which parts of the
code are actually necessary, they may spend time debugging code just to discard it later on, as we
did. Researchers can make it much easier for others to reproduce their work by publishing a clean
version of their code with informative comments and no extraneous work.

Confusing file system From our experience working with Spielman et al.’s repository, we find
that an index or some metadata regarding the structure of code and data would be beneficial.

48

https://github.com/pysal/pysal/wiki/PEP-13:-Refactor-PySAL-Using-Submodules
https://github.com/pysal/pysal/wiki/PEP-13:-Refactor-PySAL-Using-Submodules
https://pypi.org/project/pysal/2.0.0/
https://pandas.pydata.org/pandas-docs/version/0.20/whatsnew.html

The code for Spielman et al.’s analysis was originally divided into 6 different python scripts:
- data_prep.py - spss_pca.py - drop1_place.py - compute_sovis.py - spearman.py -
visualization.py

While one could infer the order of the scripts from the file names, file contents, and whether a file
called any other files, that process took a fair amount of work and left room for error. When one
script calls another script which calls another script, it can become difficult to locate the source
of an error. Had the researchers provided an index explaining the purpose of each script and how
they work together, like our procedure_metadata.csv, that would have reduced the confusion
of working with multiple scripts and prevented us from even attempting to debug unnecessary
scripts. Similarly, had the authors provided a quick summary of each of their data files, like
our data_metadata.csv, then we would have quickly understood the purpose of each data source,
instead of guessing at each’s purpose based on its name and the code that manipulates it. Generally,
the more information a researcher can provide about their data and code upfront, the less time
other researchers will need to spend deciphering their files during a reproduction.

Incomplete code While Spielman et al. provide all of the code required to reproduce their data
files, they do not provide any code for reproducing their figures. By providing their code, data,
and metadata in a GitHub repository, they are on the leading edge of reproducibility in geography.
However, they could further improve reproducibility by including code to generate their figures. As
noted in the results section, the output data files produced by our analysis and provided by Spielman
et al. were identical, yet our figures exhibited slight differences. Had Spielman et al. provided code
to produce their figures, it would be absolutely clear whether the differences between our figures
were due to typos or a difference in code; and if the differences were typos, then producing their
figures with code working directly from their data may have eliminated that issue altogether.

Our own edits The other major time sink occurred because of our own edits. Spielman et
al. provided data and metadata for reproducing their results; assuming that they acquired their
data appropriately, this should be sufficient for a reproduction. However, our end-goal with this
project is to produce a replication study that will potentially involve census data from multiple
years. To facilitate the acquisition of analogous data in several different time periods, it is helpful to
automate the process rather than manually downloading a large number of files. For this reason, we
used the python package, pygris, to acquire our data directly from the census via an API. Learning
to use pygris and checking that our data sufficiently matches Spielman et al.’s data was a lengthy
but worthy process, as it improves reproducibility and will be useful for our future work.

1.5 Conclusions
While there are ways that Spielman et al. could make it easier to reproduce their work, we were able
to sufficiently reproduce every relevant output dataset. We find that their results to be legitimate,
highlighting issues of internal and theoretical consistency with SoVI.

Our main takeaway from reproducing Spielman et al.’s work is that merely providing one’s code,
data, and metadata is insufficient for allowing other researchers to quickly reproduce one’s results.
In particular, containerizing their software environment, cleaning their code and omitting extra-
neous information, providing some metadata regarding the structure of their code and data files,
and including code for every step of the analysis from data acquisition to figure production would
all enhance the reproducibility of their work. Spielman et al. produced a well-designed study in a
reproducible repository, but a more carefully designed and fully executable research compendium

49

https://walker-data.com/pygris/

would reduce the risk of transcription errors and allow researchers to reproduce their results in a
more reasonable time frame.

1.6 References
• Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environ-

mental Hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-
6237.8402002

• Rey, S. J., & Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods.
Review of Regional Studies, 37(1). https://doi.org/10.52324/001c.8285

• Spielman, S. E., Tuccillo, J., Folch, D. C., Schweikert, A., Davies, R., Wood, N., & Tate, E.
(2020). Evaluating Social Vulnerability Indicators: Criteria and their Application to the So-
cial Vulnerability Index. Natural Hazards, 100(1), 417–436. https://doi.org/10.1007/s11069-
019-03820-z

1.7 Funding
• Funding Name: NSF Directorate for Social, Behavioral and Economic Sciences
• Funding Title: Transforming theory-building and STEM education through reproductions

and replications in the geographical sciences
• Award info URI: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2049837
• Award number: BCS-2049837

50

	Reproduction of Spielman et al.'s 2020 Evaluation of the Social Vulnerability Index
	Authors
	Abstract
	Keywords

	Study design
	Materials and procedure
	Computational environment
	Data and variables
	Data transformations
	Analysis

	Results
	Rpr-H1
	RPr-H2
	RPr-H3

	Discussion
	Conclusions
	References
	Funding

